Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 916: 169895, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38215854

RESUMEN

Marine bony fish are important participants in Earth's carbon cycle through their contributions to the biological pump and the marine inorganic carbon cycle. However, uncertainties in the composition and magnitude of fish contributions preclude their integration into fully coupled carbon-climate models. Here, we consider recent upwards revisions to global fish biomass estimates (2.7-9.5×) and provide new stable carbon isotope measurements that show marine fish are prodigious producers of carbonate with unique composition. Assuming the median increase (4.17×) in fish biomass estimates is linearly reflected in fish carbonate (ichthyocarbonate) production rate, marine fish are estimated to produce between 1.43 and 3.99 Pg CaCO3 yr-1, but potentially as much as 9.03 Pg CaCO3 yr-1. Thus, marine fish carbonate production is equivalent to or potentially higher than contributions by coccolithophores or pelagic foraminifera. New stable carbon isotope analyses indicate that a significant proportion of ichthyocarbonate is derived from dietary carbon, rather than seawater dissolved inorganic carbon. Using a statistical mixing model to derive source contributions, we estimate ichthyocarbonate contains up to 81 % dietary carbon, with average compositions of 28-56 %, standing in contrast to contents <10 % in other biogenic carbonate minerals. Results also indicate ichthyocarbonate contains 5.5-40.4 % total organic carbon. When scaled to the median revised global production of ichthyocarbonate, an additional 0.08 to 1.61 Pg C yr-1 can potentially be added to estimates of fish contributions to the biological pump, significantly increasing marine fish contributions to total surface carbon export. Our integration of geochemical and physiological analyses identifies an overlooked link between carbonate production and the biological pump. Since ichthyocarbonate production is anticipated to increase with climate change scenarios, due to ocean warming and acidification, these results emphasize the importance of quantitative understanding of the multifaceted role of marine fish in the global carbon cycle.


Asunto(s)
Carbono , Carbonatos , Animales , Humanos , Carbono/metabolismo , Carbonatos/química , Agua de Mar/química , Isótopos de Carbono/metabolismo , Dióxido de Carbono/metabolismo , Peces/metabolismo , Ciclo del Carbono , Proteínas de Transporte de Membrana/metabolismo , Océanos y Mares
2.
Sci Total Environ ; 916: 170044, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38244625

RESUMEN

Rising CO2 emissions have heightened the necessity for increased understanding of Earth's carbon cycle to predict future climates. The involvement of marine planktonic species in the global carbon cycle has been extensively studied, but contributions by marine fish remain poorly characterized. Marine teleost fishes produce carbonate minerals ('ichthyocarbonates') within the lumen of their intestines which are excreted at significant rates on a global scale. However, we have limited understanding of the fate of excreted ichthyocarbonate. We analyzed ichthyocarbonate produced by three different marine teleosts for mol%MgCO3 content, size, specific gravity, and dissolution rate to gain a better understanding of ichthyocarbonate fate. Based on the species examined here, we report that 75 % of ichthyocarbonates are ≤0.91 mm in diameter. Analyses indicate high Mg2+ content across species (22.3 to 32.3 % mol%MgCO3), consistent with previous findings. Furthermore, ichthyocarbonate specific gravity ranged from 1.23 to 1.33 g/cm3, and ichthyocarbonate dissolution rates varied among species as a function of aragonite saturation state. Ichthyocarbonate sinking rates and dissolution depth were estimated for the Atlantic, Pacific, and Indian ocean basins for the three species examined. In the North Atlantic, for example, ~33 % of examined ichthyocarbonates are expected to reach depths exceeding 200 m prior to complete dissolution. The remaining ~66 % of ichthyocarbonate is estimated to dissolve and contribute to shallow water alkalinity budgets. Considering fish biomass and ichthyocarbonate production rates, our results support that marine fishes are critical to the global carbon cycle, contributing to oceanic alkalinity budgets and thereby influencing the ability of the oceans to neutralize atmospheric CO2.


Asunto(s)
Dióxido de Carbono , Ecosistema , Animales , Dióxido de Carbono/análisis , Gravedad Específica , Océanos y Mares , Carbonatos , Peces , Ciclo del Carbono , Océano Índico , Agua de Mar , Carbono
3.
Biomark Insights ; 16: 11772719211013359, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35173408

RESUMEN

Over the past 10 years, there has been limited progress for the treatment of brain cancer and outcomes for patients are not much improved. For brain cancer researchers, a major obstacle to biomarker driven research is limited access to brain cancer tissue for research purposes. The Mark Hughes Foundation Brain Biobank is one of the first post-mortem adult brain banks in Australia to operate with protocols specifically developed for brain cancer. Located within the Hunter New England Local Health District and operated by Hunter Cancer Biobank, the boundaries of service provided by the Brain Bank extend well into the surrounding regional and rural areas of the Local Health District and beyond. Brain cancer biobanking is challenging. There are conflicting international guidelines for best practice and unanswered questions relating to scientific, psychosocial and operational practices. To address this challenge, a best practice model was developed, informed by a consensus of existing data but with consideration of the difficulties associated with operating in regional or resource poor settings. The regional application of this model was challenged following the presentation of a donor located in a remote area, 380km away from the biobank. This required biobank staff to overcome numerous obstacles including long distance patient transport, lack of palliative care staff, death in the home and limited rural outreach services. Through the establishment of shared goals, contingency planning and the development of an informal infrastructure, the donation was facilitated within the required timeframe. This experience demonstrates the importance of collaboration and networking to overcome resource insufficiency and geographical challenges in rural cancer research programmes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...